
1 
 

Phys 410 
Spring 2013 

Lecture #24 Summary 
25 March, 2013 

 

We considered the two-body problem of two objects interacting by means of a 
conservative central force, with no other external forces acting.  The Lagrangian can be 
simplified by adopting the generalized coordinates: relative coordinate 𝑟 = 𝑟1 − 𝑟2, and the 
center of mass coordinate 𝑅�⃗ = (𝑚1𝑟1 + 𝑚2𝑟2)/𝑀, where 𝑀 = 𝑚1 + 𝑚2 is the total mass.  

The two-particle Lagrangian simplifies to ℒ�𝑅�⃗ , 𝑟� = 1
2
𝑀𝑅�⃗ ̇ 2 + 1

2
𝜇𝑟̇2 − 𝑈(𝑟), where 𝜇 =

𝑚1𝑚2/𝑀 is called the reduced mass because it is smaller than either 𝑚1 or 𝑚2.  Because this 

Lagrangian is independent of 𝑅�⃗ , it means that the center of mass (CM) momentum 𝑀𝑅�⃗ ̇  is 
constant.  The other Lagrange equation gives 𝜇𝑟̈ = −∇𝑈(𝑟), which is Newton’s second law 
for the relative coordinate. 

Taking advantage of the CM conserved momentum, we can jump to the CM (inertial) 
reference frame, where the CM is at rest, and the two particles are always moving with equal 
and opposite momenta.  In this reference frame, the Lagrangian simplifies to ℒ = 1

2
𝜇𝑟̇2 −

𝑈(𝑟).  Because only central forces act, the net torque that the particles exert on each other is 
zero, hence the total angular momentum of the particles (𝐿�⃗ ) as seen in this reference frame is 
conserved.  Writing the sum of the angular momenta of the two particles, as seen in the CM 
reference frame, in terms of the generalized coordinates, we find 𝐿�⃗ = 𝑟 × 𝜇𝑟̇, which is the 
same as the angular momentum of a single particle of mass 𝜇.  Because 𝐿�⃗  is conserved 
(including its direction), the vectors 𝑟 and 𝑟̇ must remain in a fixed two-dimensional plane 
throughout the motion.  This means that the motion is strictly two-dimensional! 

Now we have to solve the remaining two-dimensional motion problem with this 
Lagrangian: ℒ = 1

2
𝜇𝑟̇2 − 𝑈(𝑟).  Going over to polar coordinates for 𝑟, we get ℒ =

1
2
𝜇(𝑟̇2 + 𝑟2𝜑̇2) − 𝑈(𝑟).  There are two Lagrange equations that follow from this Lagrangian.  

First we note that 𝜑 is an ignorable coordinate, hence the angular momentum of the ‘particle’ 

is conserved: 𝜕ℒ
𝜕𝜑̇

= 𝜇𝑟2𝜑̇ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  This is in fact just the z-component of the total 

angular momentum vector 𝐿�⃗  that we calculated above.  We give it a new name, ℓ, because it 
is a constant of the motion (you may now recognize the notation from the quantum treatment 
of the Hydrogen atom).  The other Lagrange equation (for 𝑟) gives 𝜇𝑟̈ = 𝜇𝑟𝜑̇2 − 𝑑𝑈/𝑑𝑟.  
The first term on the RHS is the centripetal acceleration times the mass of the ‘particle’.  
Solving the angular momentum equation for 𝜑̇ gives 𝜑̇ = ℓ/𝜇𝑟2, and the radial equation of 
motion can be written in terms of ℓ as 𝜇𝑟̈ = ℓ2/𝜇𝑟3 − 𝑑𝑈/𝑑𝑟.  The first term on the RHS 
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can be written in terms of a derivative as − 𝑑
𝑑𝑟

(ℓ2/2𝜇𝑟2), so that it can be combined with the 
potential to create a new “effective potential” 𝑈𝑒𝑓𝑓(𝑟) = 𝑈(𝑟) + ℓ2/2𝜇𝑟2.  The equation of 
motion finally reduces to a simple one-dimensional form: 𝜇𝑟̈ = −𝑑𝑈𝑒𝑓𝑓/𝑑𝑟. 

 

 


